Praxis Core Academic Skills for Educators Math Review Algebra and Functions

John L. Lehet

jlehet@mathmaverick.com
www.mathmaverick.com

Algebra and Functions

Algebra and Functions

Operations on Algebraic Expressions
Factoring
Exponents
Evaluating Exponents
Solving Equations
Absolute Value
Direct Translation into Variable Expressions
Inequalities
Systems of Linear Equations
Quadratic Equations
Rational Equations
Direct and Inverse Variation
Word Problems
Functions

Algebra and Functions

Algebraic Expressions

Identify, Group and Combine Like Terms NOTE:

$$
\begin{gathered}
2 x+5 x=9 x \quad \begin{array}{l}
\text { Remember Order of Operations - PEMDAS }
\end{array} \\
\begin{array}{c}
\text { Parenthesis } \\
10 a+3 b-6 a-(-2 b)+5 a=9 a+5 b
\end{array} \begin{array}{l}
\text { Exponents } \\
\text { Multiply two Binomials }
\end{array} \quad \begin{array}{l}
\text { Addition/Subtraction (left to right) }
\end{array} \\
\begin{array}{c}
(x+2)(x+7)=x^{2}+9 x+14 \quad \text { FOIL } \\
(x-3)(x+4)=x^{2}+x-12
\end{array}
\end{gathered}
$$

Cancel and Factor Like Terms

$$
\frac{12 x y^{2}}{4 x y}=3 y
$$

Problem 1: Simplify the expression $5 \mathrm{a}+3 \mathrm{~b}-6 \mathrm{a}^{2}-4 \mathrm{~b}+2 \mathrm{a}-(-2 \mathrm{~b})$
Problem 2: Simplify the expression $\frac{18 x^{3} y^{2}}{4 x y^{3}}$

Algebra and Functions

Factoring

Difference of Two Squares

$$
\begin{array}{cc}
\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b}) & \mathrm{x}^{2}-25=(\mathrm{x}+5)(\mathrm{x}-5) \\
4 \mathrm{a}^{2}-9 \mathrm{~b}^{2}=(2 a+3 \mathrm{~b})(2 a-3 \mathrm{~b})
\end{array}
$$

Common Factors

$$
3 x^{2}+6 x=3 x(x+2)
$$

$$
\text { each term has a " } 3 x \text { " in common }
$$

that can be "taken out"

Factoring Quadratics

$$
x^{2}+4 x+3=(x+3)(x+1) \quad \text { try to factor a quadratic } \quad \text { into the product of two binomials }
$$

Problem 1: Completely factor the expression $5 \mathrm{x}^{3}+10 \mathrm{x}^{2}-15 \mathrm{x}$

Problem 2: Completely factor the expression $4 a^{3}-4 a b^{2}$

Algebra and Functions

Exponents

$$
\begin{gathered}
x^{3}=x \cdot x \cdot x \\
x^{-2}=\frac{1}{x^{2}}=\frac{1}{x} \cdot \frac{1}{x} \\
x^{a / b}=b \sqrt{ } x^{a} \\
x^{1 / 2}=\sqrt{x} \\
a^{m} \cdot a^{n}=a^{m+n} \\
\frac{a^{m}}{a^{n}}=a^{m-n} \\
\left(a^{m}\right)^{n}=a^{m n} \\
a^{0}=1
\end{gathered}
$$

Problem 1: Simplify the expression $\frac{\left(a^{3} \cdot a^{2}\right)^{4}}{a^{7}}$

Problem 2: Simplify the expression $\left(a^{-5} \cdot a^{2}\right)^{3}$

Problem 3: If $y=x^{-2 / 3}$, what is the value of y if $x=8$?

Algebra and Functions

Solving Equations

Sometimes equations may need to be factored or simplified in order to make them "look solvable"
if $x+2 y=5$, what is the value of $3 x+6 y$?

1. simplify $3 x+6 y$ to $3(x+2 y)$
2. substitute 5 in for " $x+2 y$ " to get $3(5)=15$

Solving for one variable in terms of another
if $x+y=z$, what is x in terms of y and z

1. solve for x by isolating it to one side
2. subtract y from both sides to get $\mathrm{x}=\mathrm{z}-\mathrm{y}$

Solving equations involving radical expressions

$$
4 \sqrt{ } a+12=24
$$

1. isolate the radical by subtracting 12 and dividing by $4(\sqrt{ } \mathrm{a}=3)$
2. square both sides $(a=9)$

Problem 1: If $2 \mathrm{x}+3 \mathrm{y}=4$, what is the value of $12 \mathrm{x}+18 \mathrm{y}$?

Problem 2: If $2 \mathrm{x}+3 \mathrm{y}=\mathrm{z}$, what is y in terms of x and z ?

Problem 3: Solve $3 \sqrt{ } \mathrm{a}-7=8$

Algebra and Functions

> Absolute Value NOTE: The Absolute Value of a number
> 1. If $|x|=7$, then $x=7$ or $x=-7 \quad$ is always greater than or equal to 0 !
> 2. If $|x+1|=3$, then $x+1=3$ or $x+1=-3$
> 3. If $|\mathrm{x}-1|=12$, then $\mathrm{x}-1=12$ or $\mathrm{x}-1=-12$
> In each example, there are two cases, both need to be solved
> Example 3:
> Case 1: $\mathrm{x}-1=12$
> so $\mathrm{x}=13$
> Case 2: $\quad \mathrm{x}-1=-12$
> implies $\mathrm{x}=-11$
> Therefore, if $|x-1|=12$, then $\mathbf{x}=\mathbf{1 3}$ or $\mathbf{x}=\mathbf{- 1 1}$

Problem 1: If $|3 \mathrm{x}-2|=12$, what are the possible values of x

Problem 2: If $|2 \mathrm{x}+7|=3 \mathrm{x}-2$, what are the possible values of x ?

Algebra and Functions

Direct Translation into Mathematical Expressions

Look for Key Words!

NOTE: Be careful with division and subtraction, because order matters!


```
NOTE: "is" means "="
```

Problem 1: If the product of two numbers is 18 and one number is twice the other, what are the numbers?

Problem 2: A number is decreased by half of another number?

Algebra and Functions

Inequalities

$>$ greater than
$<$ less than
\geq greater than or equal
\leq less than or equal

Simplify an inequality as if it were an equation
$3 x+2>17$
$3 x>15 \quad$ Subtract 2 from both sides
$x>5 \quad$ Divide both sides by 3
NOTE: When dividing by a negative number, the inequality sign "flips"!
$-3 x+2>17$
$-3 x>15 \quad$ Subtract 2 from both sides
$\mathrm{x}<-5 \quad$ Divide both sides by 3 and Flip the inequality

Problem 1: Which of the following are values for x if $3 \mathrm{x}-1 \geq 20$? 6, 7, 8,9

Problem 2: Which of the following are values for x if $-5 \mathrm{x}+2 \geq-\mathrm{x}+10$? $-6,-5,-4,-3,-2$

Problem 3: Solve the following for $\mathrm{x}:-3>2 \mathrm{x}+5 \geq 11$

Algebra and Functions

Systems of Linear Equations

Two Linear Equations with Two Variables

$$
\begin{aligned}
& 3 x+2 y=12 \\
& 5 x-4 y=-2
\end{aligned}
$$

The solution is the ordered pair (x, y) that makes both equations true
Combine to make One Equation with One Variable and Solve

$$
\begin{aligned}
6 x+4 y=24 & \text { Multiply first equation by } 2 \text { (both sides) } \\
5 x-4 y=-2 & \\
11 x+0 y=22 & \text { Add the equations } \\
x=2 & \text { Solve for the variable }
\end{aligned}
$$

Use this Solution to find the other variable via Substitution

$$
\begin{array}{cl}
3 x+2 y=12 & \\
6+2 y=12 & \\
2 y=6 & \text { So the answer is }(2,3)
\end{array}
$$

Problem 1: Given that $\mathrm{x}+\mathrm{y}=7$ and $2 \mathrm{x}-\mathrm{y}=5$, what are the values of x and y ?

Problem 2: The sum of two weights is 100 pounds and their difference is 20 , what is the smaller weight?

Algebra and Functions

Solving Quadratic Equations

Quadratics will typically factor into the product of two binomials

$$
x^{2}+3 x-10=(x+5)(x-2)
$$

Factoring out of like terms may be required

$$
4 x^{2}+12 x-40=4\left(x^{2}+3 x-10\right)=4(x+5)(x-2)
$$

$$
3 x^{3}+9 x^{2}-30 x=3 x\left(x^{2}+3 x-10\right)=3 x(x+5)(x-2)
$$

To solve a quadratic equation, set the quadratic to 0

$$
\begin{gathered}
x^{2}+3 x-6=4 \\
x^{2}+3 x-10=0 \\
(x+5)(x-2)=0 \\
x+5=0 \quad \text { So } \quad \text { and } \quad x-2=0
\end{gathered}
$$

Solve Both Equations

$$
x=-5 \quad \text { and } \quad x=2
$$

Problem 1: Factor $\mathrm{x}^{2}-2 \mathrm{x}-15$

Problem 2: Factor $2 \mathrm{x}^{3}+12 \mathrm{x}^{2}+16 \mathrm{x}$

Problem 2: What are the solutions of x for the equation $\mathrm{x}^{2}+5 \mathrm{x}-14=0$

Algebra and Functions

Rational Equations and Inequalities

A rational expression is the quotient of two polynomials

$$
\frac{2 x+8}{3 x-2}
$$

A rational equation is an equation with at least on rational expression

$$
3=\frac{2 x+8}{3 x-2}
$$

Solve a rational equation by multiplying by the denominator

$$
\begin{gathered}
3(3 \mathrm{x}-2)=2 \mathrm{x}+8 \\
9 \mathrm{x}-6=2 \mathrm{x}+8 \\
7 \mathrm{x}=14 \\
\mathrm{x}=2
\end{gathered}
$$

Problem 1: Solve $\frac{\mathrm{x}+3}{2 \mathrm{x}-3}=2$

Problem 2: Solve $\frac{2 \mathrm{x}-9}{3 \mathrm{x}-5}=-5$

Algebra and Functions

Direct and Inverse Variation

Variables x and y are directly proportional if $y=k x$ for some constant value k
If x increases then y increases
If x decreases then y decreases
if y increases then x increases
x and y
If y decreases then x decreases
act the same!

Variables x and y are inversely proportional if $y=k / x$ for some constant value k
If x increases then y decreases
If x decreases then y increases
x and y
if y increases then x decreases
act as opposites!
If y decreases then x increases

Algebra and Functions

Functions
 $$
\mathbf{f}(\mathbf{x})=\mathbf{x}+\mathbf{1} \text { is a function of } \mathrm{x}
$$

Domain of a

function: The set of all x values in which the function is defined
Example: the domain of $f(x)=x+1$ is all real numbers
Example: the domain of $f(x)=1 /(x-1)$ is all real numbers except for 1
Example: the domain of $f(x)=\sqrt{ } x$ is all nonnegative real numbers

Range of a
function: The set of all values in which $f(x)$ is defined
Example: the range of $f(x)=x+1$ is all real numbers
Example: the range of $f(x)=1 /(x-1)$ is all real numbers except for 0
Example: the range of $f(x)=|x|$ is all nonnegative real numbers

To solve a function at a specific value, just substitute
If $f(x)=2 x-2$, what is $f(-3)$?

$$
f(-3)=2(-3)-2=-6-2=-8
$$

