Praxis Core Academic Skills for Educators Math Review Algebra and Functions

John L. Lehet <u>jlehet@mathmaverick.com</u> www.mathmaverick.com

Operations on Algebraic Expressions Factoring Exponents Evaluating Exponents Solving Equations Absolute Value Direct Translation into Variable Expressions Inequalities Systems of Linear Equations Quadratic Equations Rational Equations Direct and Inverse Variation Word Problems **Functions**

Algebraic Expressions

Identify, Group and Combine Like Terms

2x + 5x = 9x 10a + 3b - 6a - (-2b) + 5a = 9a + 5bRemember Order of Operations – **PEMDAS**Parenthesis
Exponents

NOTE:

Multiplication/Division (left to right) Addition/Subtraction (left to right)

Multiply two Binomials

 $(x + 2)(x + 7) = x^2 + 9x + 14$ (x - 3)(x + 4) = x² + x - 12 FOIL

Cancel and Factor Like Terms

$$\frac{12xy^2}{4xy} = 3y$$

Problem 1: Simplify the expression $5a + 3b - 6a^2 - 4b + 2a - (-2b)$

Problem 2: Simplify the expression $\frac{18x^3y^2}{4xy^3}$

Factoring

Difference of Two Squares

 $a^2 - b^2 = (a + b)(a - b)$

example
$x^2 - 25 = (x + 5)(x - 5)$
$4a^2 - 9b^2 = (2a + 3b)(2a - 3b)$

Common Factors

 $3x^2 + 6x = 3x(x+2)$

each term has a "3x" in common that can be "taken out"

Factoring Quadratics

 $x^2 + 4x + 3 = (x + 3)(x + 1)$

try to factor a quadratic into the product of two binomials

Problem 1: Completely factor the expression $5x^3 + 10x^2 - 15x$

Problem 2: Completely factor the expression $4a^3 - 4ab^2$

Exponents
$x^3 = x \bullet x \bullet x$
$x^{-2} = \frac{1}{x^2} = \frac{1}{x} \cdot \frac{1}{x}$
$\mathbf{x}^{\mathbf{a}/\mathbf{b}} = \mathbf{b}\sqrt{\mathbf{x}^{\mathbf{a}}}$
$\mathbf{x}^{1/2} = \sqrt{\mathbf{x}}$
$a^m ullet a^n = a^{m+n}$
a^m
$\frac{a^{m}}{a^{n}} = a^{m-n}$
$(a^m)^n = a^{mn}$
(a) a
$a^0 = 1$
Problem 1: Simplify the expression $\frac{(a^3 \cdot a^2)^4}{a^7}$
Problem 2: Simplify the expression $(a^{-5} \cdot a^2)^3$
Problem 3: If $y = x^{-2/3}$, what is the value of y if $x = 8$?

Solving Equations

Sometimes equations may need to be factored or simplified in order to make them "look solvable"

if x + 2y = 5, what is the value of 3x + 6y?

- 1. simplify 3x + 6y to 3(x + 2y)
- 2. substitute 5 in for "x + 2y" to get 3(5) = 15

Solving for one variable in terms of another

if x + y = z, what is x in terms of y and z

- 1. solve for x by isolating it to one side
- 2. subtract y from both sides to get x = z y

Solving equations involving radical expressions

 $4\sqrt{a} + 12 = 24$

- 1. isolate the radical by subtracting 12 and dividing by 4 ($\sqrt{a} = 3$)
- 2. square both sides (a = 9)

Problem 1: If 2x + 3y = 4, what is the value of 12x + 18y?

Problem 2: If 2x + 3y = z, what is y in terms of x and z?

Problem 3: Solve $3\sqrt{a} - 7 = 8$

Absolute Value NOTE: The Absolute Value of a number 1. If $|\mathbf{x}| = 7$, then $\mathbf{x} = 7$ or $\mathbf{x} = -7$ is always greater than or equal to 0! 2. If $|\mathbf{x}+1| = 3$, then $\mathbf{x}+1 = 3$ or $\mathbf{x}+1 = -3$ 3. If $|\mathbf{x}-1| = 12$, then $\mathbf{x}-1 = 12$ or $\mathbf{x}-1 = -12$ In each example, there are two cases, both need to be solved Example 3: Case 1: $\mathbf{x}-1 = 12$ so $\mathbf{x} = 13$ Case 2: $\mathbf{x}-1 = -12$ implies $\mathbf{x} = -11$ Therefore, if $|\mathbf{x}-1| = 12$, then $\mathbf{x} = 13$ or $\mathbf{x} = -11$

Problem 1: If |3x - 2| = 12, what are the possible values of x

Problem 2: If |2x + 7| = 3x - 2, what are the possible values of x?

Direct Translation into Mathematical Expressions

	Look for Ke	y Words! an	NOTE: Be careful with division d subtraction, because order matters!
ADDITION sum added to increased by more than and	SUBTRACTION difference taken away decreased by less than	MULTIPLICAT times twice product of	ION <u>DIVISION</u> divided half quotient
"The sum o "3 less "twice	Expression/Equation of two numbers is 7" than a number" a number and 3" d by twice another number		ble Expression/Equation x + y = 7 x - 3 2x + 3 $x \div 2y$
	NOTE: "is	" means "="	

Problem 1: If the product of two numbers is 18 and one number is twice the other, what are the numbers?

Problem 2: A number is decreased by half of another number?

Inequalities

> greater than
 < less than
 ≥ greater than or equal
 ≤ less than or equal

Simplify an inequality as if it were an equation

3x + 2 > 17	
3x > 15	Subtract 2 from both sides
x > 5	Divide both sides by 3

NOTE: When dividing by a negative number, the inequality sign "flips"!

-3x + 2 > 17	
-3x > 15	Subtract 2 from both sides
x < -5	Divide both sides by 3 and Flip the inequality

Problem 1: Which of the following are values for x if $3x - 1 \ge 20$? 6, 7, 8, 9

Problem 2: Which of the following are values for x if $-5x + 2 \ge -x + 10$? -6, -5, -4, -3, -2

Problem 3: Solve the following for x: $-3 > 2x + 5 \ge 11$

Systems of Linear Equations **Two Linear Equations with Two Variables** 3x + 2y = 125x - 4y = -2The solution is the ordered pair (x,y) that makes both equations true Combine to make One Equation with One Variable and Solve 6x + 4y = 24Multiply first equation by 2 (both sides) 5x - 4y = -211x + 0y = 22Add the equations x = 2Solve for the variable Use this Solution to find the other variable via Substitution 3x + 2y = 126 + 2y = 122y = 6So the answer is (2,3)v = 3

Problem 1: Given that x + y = 7 and 2x - y = 5, what are the values of x and y?

Problem 2: The sum of two weights is 100 pounds and their difference is 20, what is the smaller weight?

Solving Quadratic Equations

Quadratics will typically factor into the product of two binomials $x^2 + 3x - 10 = (x + 5)(x - 2)$

> Factoring out of like terms may be required $4x^2 + 12x - 40 = 4(x^2 + 3x - 10) = 4(x + 5)(x - 2)$

 $3x^3 + 9x^2 - 30x = 3x(x^2 + 3x - 10) = 3x(x + 5)(x - 2)$

To solve a quadratic equation, set the quadratic to 0

$$x^{2} + 3x - 6 = 4$$

$$x^{2} + 3x - 10 = 0$$

$$(x + 5)(x - 2) = 0$$
Solve Both Equations
$$x = -5 \text{ and } x = 2$$

Problem 1: Factor $x^2 - 2x - 15$

Problem 2: Factor $2x^3 + 12x^2 + 16x$

Problem 2: What are the solutions of x for the equation $x^2 + 5x - 14 = 0$

Rational Equations and Inequalities

A rational expression is the quotient of two polynomials

 $\frac{2x+8}{3x-2}$

A rational equation is an equation with at least on rational expression

$$3 = \frac{2x+8}{3x-2}$$

Solve a rational equation by multiplying by the denominator

$$3(3x-2) = 2x + 89x - 6 = 2x + 87x = 14x = 2$$

Problem 1: Solve
$$\frac{x+3}{2x-3} = 2$$

Problem 2: Solve
$$\frac{2x-9}{3x-5} = -5$$

Direct and Inverse Variation

Variables x and y are directly proportional if y = kx for some constant value k

If x increases then y increases	
If x decreases then y decreases	
if y increases then x increases	
If y decreases then x decreases	

x and y act the same!

Variables x and y are inversely proportional if y = k/x for some constant value k

If x increases then y decreases If x decreases then y increases if y increases then x decreases If y decreases then x increases

x and y act as opposites!

Functions

f(x) = x + 1 is a function of x

Domain of a

function: The set of all x values in which the function is defined

Example: the domain of f(x) = x + 1 is all real numbers Example: the domain of f(x) = 1/(x - 1) is all real numbers except for 1 Example: the domain of $f(x) = \sqrt{x}$ is all nonnegative real numbers

Range of a

function: The set of all values in which f(x) is defined

Example: the range of f(x) = x + 1 is all real numbers Example: the range of f(x) = 1/(x - 1) is all real numbers except for 0 Example: the range of f(x) = |x| is all nonnegative real numbers

To solve a function at a specific value, just substitute If f(x) = 2x - 2, what is f(-3)?

f(-3) = 2(-3) - 2 = -6 - 2 = -8